煤和岩石渗透率测试 *** 有哪些_煤和岩石渗透率测试 ***

hacker|
140

松软煤层钻进用可降解钻井液的试验研究

蔡记华1 谷穗2 乌效鸣1 刘浩1 陈宇1

基金项目:国家自然科学基金项目(40802031、41072111)。

作者简介:蔡记华,1978年生,男,湖北浠水人,博士、副教授,从事钻井液与储层保护方面的教学和研究工作, *** :027-67883142,E-mail:catchercai@126.com。

(1.中国地质大学(武汉)工程学院 湖北武汉 4300742.中国地质大学武汉江城学院 湖北武汉 430200)

摘要:松软煤层中的钻进护孔技术是目前煤矿瓦斯抽采利用中亟待解决的技术难题之一。论文首先在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等 *** 对其性能进行了综合研究。结果表明:可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间)。研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

关键词:松软煤层 瓦斯抽采 可降解钻井液 护孔 储层保护

Experimental Research on Degradable Drilling Fluid for Drilling in Unconsolidated and Soft Coal Seam

CAI Jihua1, GU Sui2, WU Xiaoming1, LIU Hao1, CHEN Yu1

(1.Engineering Faculty, China University of Geosciences, Wuhan 430074, China;2.Jiangcheng College, China University of Geosciences, Wuhan 430200, China)

Abstract: Technologies needed to stabilize the wellbore are among the most urgent problems that require be- ing resolved in the drainage and exploitation of coalmine methane (CMM) from unconsolidated and soft coal seams.In the first, the paper theoretically *** yzed the borehole maintaining and biodegradation mechani *** s of degradable drilling fluid.Then systematical study on its performance were carried out by utilizing rheology tests, mud cake remove tests and coal rock gas permeability tests.Results show that the degradation properties of degrad- able drilling fluid were controllable and it was fit for the coalmine operation environment.Furthermore, complex unplugging technologies employing enzymatic degradation plus acidification by HCl was effective in removing the damage caused by mud cakes of degradable drilling fluid and resuming the gas permeability of coal rock or even en- hance it by a ratio between 15.47% and 38.92%.Technological achievements of this paper can help to resolve the contradiction between borehole maintaining and reservoir protection, and also offer powerful theoretical and techni- cal foundation for drilling technology optimization and production capacity enhancement in vertical, horizontal and multi-lateral drilling for coalbed methane exploration.

Keywords: unconsolidated and soft coal sea; coalmine methane drainage and exploitation; degradable drill-ing fluid; borehole maintain; reservoir protection.

1 可降解钻井液的提出

根据抽采对象的不同,可将煤矿瓦斯抽采分为本煤层瓦斯抽采、邻近层瓦斯抽采和采空区瓦斯抽采[1]。由于我国地质构造条件复杂,成煤时代多,煤矿区分布广,煤储层特征差异大。简单起见,可划分为正常煤体结构的硬煤层和构造发育的松软煤层两种典型类型。对于松软煤层,由于煤与瓦斯突出、煤层松软、机械强度低等原因,采用清水或空气等常规排粉钻进方式时易出现塌孔、卡钻或喷孔等问题,打钻成孔困难,瓦斯抽采效率低。松软煤层的煤层气开发是我国煤层气产业化面临的最严峻的挑战之一[2~4],在此类煤层中钻进护孔技术是目前亟待解决的技术难题之一[5~6]。

为达到较好的护孔效果,通常在钻井液中添加纤维素、胍尔胶和生物聚合物等聚合物。纤维素和胍尔胶等起到增粘、降低摩阻和润滑作用以保持井壁稳定,而生物聚合物可以增强钻井液在水平井段内的岩屑悬浮能力。尽管这类钻井液对储层的伤害比传统泥浆要小,但还是会在井壁上形成了低渗透的滤饼。滤饼的不充分降解会极大地影响井壁的流动能力,结果是显著降低生产井的产量。因此,特别是在松散地层和高渗透性地层中,必须清除渗滤到地层中的钻井液以及沉积在井壁上的滤饼,以实现产量更大化。

近年来,针对松散地(储)层钻进中护孔和储层保护的矛盾,我们提出了一种环境友好的可降解钻井液的研究思路[7~11]:在钻进时能保持孔壁稳定,而在钻进工作结束后,钻井液能在生物酶和无机酸作用下实现降解、粘度下降,先前形成的滤饼破除、产层流体的流动性增强、恢复地下流体资源解吸扩散通道,达到提高地下流体资源产量效果的目的。

本文在上述研究基础上,在理论上分析了松散煤层钻进用可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性测试、滤饼清除实验和煤岩气体渗透率测试等 *** 对可降解钻井液的性能进行了综合研究。

2 可降解钻井液的作用机理

2.1 可降解钻井液的护孔作用机理

可降解钻井液主剂由粘土稳定剂(如KCl)、水溶型或酸溶型架桥粒子/加重剂(一般为细粒CaCO3或无机盐)、降滤失剂(主要是天然植物胶如淀粉或纤维素或胍尔胶)、流型调节剂(如生物聚合物XC)等组成,这些处理剂共同起到增粘和降低摩阻作用;当钻进结束后,加入能降解各种聚合物的生物酶破胶剂[12~15]和能溶解细粒CaCO3无机酸(通常是15%的HCl[12,14])或有机酸[13,16]来清除聚合物滤饼(主要由聚合物和CaCO3组成)对储层渗透性的伤害。下面分别阐述各种处理剂的作用机理。

(1)粘土稳定剂可以用来抑制煤岩中粘土矿物遇水后膨胀;

(2)水溶型或酸溶型架桥粒子可以在煤岩表面的孔隙或裂隙孔喉处形成架桥,起到防止钻孔漏失的目的,同时CaCO3或无机盐也可以适当增加钻井液的密度,起到平衡地层压力的作用;

(3)天然植物胶大分子物质相互桥接,滤余后附在孔壁上形成隔膜。这些隔膜薄而坚韧,渗透性极低,可以阻碍自由水继续向煤层渗漏(图1)。同时,这类聚合物钻井液具有良好的包被抑制性,能有效地抑制钻屑分散。另外,这类具有强亲水基团的长链环式高分子化合物易溶于水,形成的水溶液具有较高粘度,可以增强钻孔孔壁表面松散煤粒之间的胶结力,起到加固松软煤层孔壁的效果;

图1 Na-CMC在粘土颗粒上的吸附方式

(4)生物聚合物XC是一种优良的流型调节剂,用它处理的钻井液在高剪切速率下的极限粘度很低,有利于提高机械钻速;而在环形空间的低剪切速率下又具有较高的粘度,并有利于形成平板形层流,可增强钻井液在近水平煤层钻孔中的携岩效果。

2.2 可降解钻井液的生物降解作用机理

所谓降解,是指在物理因素、化学因素或生物因素等的作用下聚合物分子量降低的过程。从实用的角度出发,聚合物降解可分为热降解、机械降解、光化学降解、辐射化学降解、生物降解及化学降解等不同的引发方式[17]。下面以胍尔胶为例,阐述生物酶降解聚合物的作用机理。

胍尔胶属于半乳甘露聚糖类,所用胍尔胶分子主链由β-1,4糖甙键将D-甘露糖单元连接而成,D-半乳糖取代基通过α-1,6糖甙键接在甘露糖主链上,沿甘露糖主链随机分布,半乳糖与甘露糖单元之比约为1:1.6。半乳甘露聚糖特异复合酶可有效地水解半乳甘露聚糖,它由两种O键水解酶组合而成,两种酶的降解机理如图2所示。

之一种O键水解酶是α-半乳糖甙酶(蜜二糖酶),专门作用于半乳糖取代基,可用来水解末端的非还原性α-D-半乳糖甙键。第二种O键水解酶过去常用来分解胍尔胶分子,在此专门作用于甘露糖主链,这种水解酶被称作β-1,4甘露聚糖环内水解酶,可随机水解β-1,4-D-甘露糖甙键[18]。

后续室内实验采用的酶制剂是几种生物酶的复配物。特种酶1号(SE-1)以纤维素甙键特异酶和半乳甘露聚糖特异复合酶为主,特种酶2号(SE-2)和特种酶4号(SE-4)以半乳甘露聚糖特异复合酶为主。

图2 胍尔胶糖甙键特异酶的降解机理

图3 胍尔胶钻井液的降粘曲线

3 可降解钻井液的室内试验

3.1 降粘效果评价

在理论分析基础上,进行了生物酶降解聚合物的室内实验,以钻井液流变参数为主要评价指标,用几种特种酶来降解单一聚合物或复配聚合物。将生物酶分别加入单一聚合物和复合聚合物中,研究生物酶对这些可降解钻井液的降粘效果,将表观粘度(AV)、塑性粘度(PV)和动切力(YP)随时间的变化关系绘制成曲线如图3~图5所示。

3.1.1 单一聚合物钻井液

从图3可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.5%的胍尔胶钻井液的表观粘度从23.5mPa·s降低到5mPa·s。塑性粘度和动切力也呈现出类似的变化规律。

由图4可以看出,在特种酶SE-1的作用下,在48.5h之内,质量浓度为0.75%的羧甲基纤维素钻井液的表观粘度从20.5mPa·s降低到6mPa·s。

由于特种生物酶SE-1同时含有纤维素甙键特异酶和半乳甘露聚糖特异复合酶,它对胍尔胶和羧甲基纤维素均有较好的降解效果。

3.1.2 复配聚合物

从图5可以看出,在特种酶SE-2的作用下,在46h之内,由质量浓度为0.3%羧甲基纤维素和0.2%胍尔胶组成的复合聚合物钻井液的表观粘度从25.5mPa·s降低到5mPa·s。随着时间的变化,塑性粘度和动切力也按类似的规律下降。

由图3~图5可以看出,在生物酶作用下,聚合物能实现有效的降解,聚合物大分子逐渐断链变成小分子,钻井液粘度降低,在煤储层中的流动性增强,从而恢复煤层气解吸释放的通道。

图4 羧甲基纤维素钻井液的降粘曲线

图5 复配聚合物钻井液的降粘曲线

3.2 滤饼清除实验

实验目的是通过观察可降解钻井液滤饼在生物酶破胶剂(和无机酸)的作用下滤饼表面的变化情况、考察滤饼的解堵效果(结果分别如图6~图7所示)。可降解钻井液的配方如下:

配方1:400ml水+2.6gCMC+4gDFD+4.8gCaCO3+NH4HCl(调节pH),先后采用0.00625%的SE-4溶液和5%HCl浸泡滤饼。

配方2:400ml水+1.6gCMC+8g膨润土,采用0.04%JBR溶液浸泡滤饼。

配方1的滤饼清除实验结果如图6所示,可以看出:单独使用生物酶SE-4只能清除该套体系中的CMC(图6-b),而对CaCO3等影响不大。当用5%HCl浸泡2h后,滤饼变得非常薄,说明CaCO3已与HCl充分反应[1]。

图6 滤饼的外观变化图

按照配方2所配制钻井液的滤饼清除实验结果如图7所示。由于这种配方中只有CMC这种聚合物,在用JBR溶液浸泡5h后,可降解钻井液的滤饼已基本降解完全。

图7 JBR作用下可降解钻井液(配方4)滤饼清除情况

3.3 煤岩气体渗透率测试

煤矿井下瓦斯抽放的最终目的就是恢复煤层的渗透率,获得较高的瓦斯抽放量。因此,渗透性的恢复对于可降解钻井液而言是一个更加直接的衡量指标。采用JHGP智能气体渗透率和JHLS智能岩心流动实验仪对可降解钻井液进行渗透性恢复实验,实验步骤详见参考文献[11]。

煤岩气体渗透率测试结果(表1)表明:晋-3煤样经过“污染—生物酶降解—酸化”三个阶段,其渗透率表现出“下降—上升—上升”的趋势,而且经过生物酶降解和酸化(也包括之前的加热处理)之后,煤岩的气体渗透率甚至超过了污染前的气体渗透率(如图8所示,推测盐酸亦与煤岩中的方解石和白云石发生反应,增大了煤岩孔隙裂隙),这也证实了“生物酶降解—酸化处理”的综合解堵工艺是有效的,有利于提高煤层气藏的采收率。

表1 煤岩气体渗透率

注:(1)下游压力(出口压力)为0.1MPa(即1个大气压);(2)△K=(K4-K1)*100/K1。

图8 不同处理阶段煤岩平均气体渗透率变化情况

4 结论

论文在理论上分析了可降解钻井液的护孔作用机理和生物降解作用机理,并通过流变性评价、滤饼清除实验和煤岩气体渗透率测试等实验手段对可降解钻井液进行了综合研究,主要得出以下结论:

(1)可降解钻井液的降解性能人为可控,能适合煤矿井下作业环境;

(2)生物酶降解加盐酸酸化的双重解堵措施可有效地清除可降解钻井液对煤层气储层的伤害,并能恢复甚至提高煤岩气体渗透率(增幅在15.47%~38.92%之间);

(3)研究成果可以解决松软煤层瓦斯抽采孔钻进工作中护孔与储层保护的矛盾问题,也可为煤层气垂直井、水平井和分支井的钻井工艺优化与产能提高提供重要的理论和技术基础。

参考文献

[1]王兆丰,刘军.2005.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,36(3),29~33

[2]苏现波,王丽萍.2001.中国煤层气产业化的机遇、挑战与对策[C].瓦斯地质新进展,222

[3]饶孟余,杨陆武,冯三利等.2005.中国煤层气产业化开发的技术选择[J].特种油气藏,12(4),2

[4]袁亮.2007.淮南矿区煤矿先抽后采的瓦斯治本技术[J].中国煤炭.33(5),5~7

[5]张群.2007.关于我国煤矿区煤层气开发的战略思考[J].中国煤炭,33(11),9~11

[6]国家发展和改革委员会.2005.煤层气(煤矿瓦斯)开发利用“十一五”规划[R]

[7]蔡记华,乌效鸣,潘献义等.2004.暂堵型钻井液的试验研究.地质科技情报[J],23(3):97~100

[8]蔡记华,乌效鸣,刘世锋.2004.自动降解钻井液在水井钻进中的应用[J].煤田地质与勘探,32(5):52~54

[9] Jihua Cai, Xiaoming Wu, Sui Gu.2009.Research on environmentally safe temporarily plugging drilling fluid in water well drilling [C] .SPE 122437

[10] 蔡记华, 乌效鸣, 谷穗等.2010. 煤层气水平井可生物降解钻井液流变性研究 [J] . 西南石油大学学报(自然科学版), 32 (5): 126~130

[11] 蔡记华,刘浩, 陈宇等.煤层气水平井可降解钻井液体系研究 [J] .煤炭学报, 已录用

[12] Beall, Brian B., Tjon-Joe-Pin, Robert, Brannon, et al.1997.Field experience validates effectiveness of drill-in fluid cleanup system [C] .SPE 38570

[13] Frederick O.Stanley, Phil Rae, Juan C.Troncoso.1999.Single step enzyme treatment enhances production capacity on horizontal wells [C] .SPE 52818

[14] K.P.O' Driscoll, N.M.Amin, I.Y.Tantawi.2000.New treatment for removal of mud-polymer damage in multilateral wells drilled using starch-based fluids [J] .SPE Drilling Completion, 15 (3): 167~176

[15] Hylke Simonides, Gerhard Schuringa, Ali Ghalambor.2002.Role of starch in designing non-damaging completion and drilling fluids [C] .SPE 73768

[16] R. C.Burton, R. M.Hodge, Ian Wattie, Jane Tomkinson. 2000.Field test of a novel drill-in fluid clean-up technique[C] .SPE 58740

[17] [德] W.施纳贝尔.1998.聚合物降解原理及应用 [M] .科学出版社, 180~187

[18]李明志,刘新全,汤志胜等.2002.聚合物降解产物伤害与糖甙键特异酶破胶技术 [J].油田化学, 19(1), 89~92

煤层气选区评价参数标准和 *** 体系

一、煤层气选区评价参数标准的建立

参考国外煤层气目标评价标准、参数及中国煤层气高产富集的基本条件,从中国煤层气勘探开发实际地质条件出发,优选出资源丰度、煤阶、煤层厚度、含气量、地解比、吸附饱和度、煤层原始渗透率、有效地应力、煤层埋深、构造条件及水文地质条件等11项关键参数。

(一)煤层气资源规模及丰度

国家标准《石油天然气资源/储量分类》规定,常规天然气大、中、小型气田的资源量规模分别为大于300×108m3、50×108~300×108m3和小于50×108m3,考虑到煤层气采收率低的事实,上述界限分别设为1000×108m3、200×108~1000×108m3和小于200×108m3。

与煤层气目标资源规模相比,资源丰度的意义更为重要,一井多层或多段开发可以弥补含气量偏低之不足,煤层累厚大而含气量偏低的目标区同样有较大的开发价值。同时,资源丰度作为唯一指标,亦可避免多重指标造成的不协调矛盾,从而可使煤层气区带含气性类型的确定具有唯一性。

煤层气储层与常规储层相比,属低孔隙度、低渗透率、低丰度储层。储量丰度受控于煤层厚度、含气量及煤层密度、灰分含量等因素。具有煤层气开发价值的地区,资源量丰度应在中等以上。如美国圣胡安盆地资源丰度为1.28×108m3/km2,中国沁水煤层气大气田资源丰度大于2.00×108m3/km2,美国黑勇士盆地资源丰度为0.38×108m3/km2,中国鄂尔多斯盆地东部大宁—吉县地区煤层气资源丰度为2.85×108m3/km2,中国宁武盆地南部煤层气资源丰度为2.10×108m3/km2,中国准噶尔盆地南部昌吉地区煤层气资源丰度为1.06×108m3/km2,中国霍林河盆地煤层气资源丰度为2.40×108m3/km2。而目前勘探尚未获得工业性开发的一些盆地或地区,如中国江西丰城、云南恩宏、东北三江—穆棱河盆地、淮南、淮北等地区,煤层气资源丰度均小于0.50×108m3/km2。

对全国29个聚气带(台湾除外)和115个目标区的统计结果表明,资源丰度小于0.50×108m3/km2的聚气带占7%,目标区占12%;资源丰度介于0.5×108~1.5×108m3/km2之间聚气带占57%,目标区占55%;资源丰度大于1.5×108m3/km2的聚气带占36%,目标区占33%。在资源丰度分布直方图(图4-5)上(叶建平等,1998),资源丰度0.5×108m3/km2和1.5×108m3/km2处对应于煤层气区带资源丰度分布曲线上的两个拐点,是资源丰度变化或分布的两条自然分界。由此,分别以资源丰度0.5×108m3/km2和1.5×108m3/km2为界,将煤层气区带划为富气聚气带(目标区)、含气聚气带(目标区)和贫气聚气带(目标区)3种含气类型(表4-2)。

表4-2 中国煤层气目标区资源规模及丰度划分表

图4-5 中国煤层气区带资源丰度累计频率直方图

(二)煤阶

煤的吸附能力随煤阶的变化呈现阶段式、跃变式变化,充分反映出煤化作用控制分子结构、晶体结构和表面物理化学性质,是煤吸附能力的主要控制因素。

因此,由于低煤阶吸附能力较低,决定了低煤阶煤含气量较低,在确定煤层气选区评价标准时低煤阶含气量标准应相应降低,同时煤层厚度标准应相应提高,以弥补含气量的不足(表4-3)。

表4-3 中国不同煤阶划分标准表

(三)煤层厚度

国内外获商业性煤层气流的地区,煤层总厚度均大于10m,主力煤层厚度大于2m,薄煤层分布区的煤层气一般没有商业开采价值。美国圣胡安盆地高产区煤层平均厚15m,低煤阶的粉河盆地煤层厚12~30m;中国沁水煤层气田、鄂尔多斯盆地东部大宁—吉县地区和宁武盆地南部煤层气富集区煤层厚15m左右,韩城地区煤层单层厚度大于1.5 m,准噶尔盆地昌吉地区煤层厚30m左右,霍林河盆地煤层厚度超过50m。

通过统计中国主要煤层气目标区煤层厚度与煤层含气量及单井日产量之间的关系可以得出,中高煤阶煤层单层厚度应大于1.5m,大于5m最有利,低煤阶煤层厚度应大于5m,煤层气开发具有较好效果,大于10m最有利(图4-6、图4-7)。

图4-6 中国中高煤阶煤层厚度与煤层含气量及单井日产气量之间的关系图

图4-7 中国低煤阶煤层厚度与单井日产气量之间的关系图

(四)煤层含气量

国内外已开发的煤层气气田高产区块以较高含气量为主,美国圣胡安、黑勇士盆地重点开发区,平均含气量分别为17.0m3/t、16.6m3/t;中国沁水煤层气田平均为16.0m3/t,更高达30.0m3/t,鄂尔多斯盆地东部大宁—吉县地区煤层含气量平均为16.0m3/t,宁武盆地南部煤层含气量平均为11.0m3/t。而含气量小于8.0m3/t的一些低含气、高饱和地区,如美国尤因塔盆地、粉河盆地单井日产气量也可超过4000m3;中国霍林河盆地煤层含气量平均为5.7m3/t,吸附饱和度超过90%,单井日产气量达到1000m3。

从中国煤层含气量与单井日产量之间的关系可以看出,中高煤阶单井日产气超过1000m3的煤层气井煤层含气量大于5.0m3/t,低煤阶单井日产气超过1000m3的煤层气井煤层含气量大于2.0m3/t。

初步将煤层气选区评价煤层含气量界限中、高煤阶为5.0m3/t以上,大于8.0m3/t最有利,低煤阶煤层含气量大于2.0m3/t,大于4.0m3/t最有利(图4-8)。

图4-8 中国中高煤阶煤层含气量与单井日产气量之间的关系图

(五)煤层气吸附饱和度

吸附饱和度是实测含气量与理论含气量的比值。实测含气量是煤心解吸得到的含气量(包括解吸气、残余气和损失气),需要用绳索式密闭取心技术快速取煤心罐装解吸实测;理论含气量是吸附等温线上与原始地层压力对应的含气量。

一些煤层气高产富集区块均为高饱和度,如圣胡安盆地为90%~98%,黑勇士盆地为92%~99%,低煤阶的粉河盆地超过100%,沁水煤层气田为85%~95%,大宁—吉县地区为80%~100%,宁武盆地南部地区超过85%,昌吉地区为95%~98%,霍林河盆地超过90%;中等饱和度气藏因地解压差大而开采成本高,如鄂尔多斯盆地东部吴堡为60%~80%;低饱和度气藏一般无商业开采价值,如沁水盆地屯留地区,吸附饱和度低于30%,临县—兴县地区也仅为30%~50%。

从中国煤层吸附饱和度与单井日产量之间的关系可以看出,单井日产气超过1000m3的煤层气井煤层吸附饱和度均大于50%,产气效果较好的地区煤层吸附饱和度大于70%。因此初步将煤层气选区评价吸附饱和度界于50%以上,大于70%最有利(图4-9)。

图4-9 中国煤层含气饱和度与单井日产气量之间的关系图

(六)煤层原始渗透率

煤层气与常规天然气显著不同,一是煤层同为源岩和产层,煤层气吸附量与其孔隙内表面积直接相关;二是煤层为低孔、低渗储层,其割理发育程度是影响其渗透率并控制产能的关键因数之一。

煤的原始渗透率无法在实验室测定,一般要在井筒中采用注入/压降试井法或DST试井法测试求取。低渗透率煤层分布区的煤层气一般无开采价值,产能高的地区,煤层原始渗透率一般为高—较高。例如,圣胡安盆地高产区块为1×10-3~50×10-3μm2,属中高渗透率;黑勇士、皮申斯及沁水煤层气田、鄂尔多斯盆地东部柳林地区一般为0.5×10-3~5.0×10-3μm2,为较高渗透率。日产气量1000~1500m3的较低工业性气流区,多为中—低渗透率,如陕西吴堡地区、山西沁水盆地东部屯留地区,渗透率0.1×10-3~0.5×10-3μm2。

从中国煤层渗透率与单井日产气量之间的关系可以看出,单井日产气量超过1000m3的煤层气井煤层原始渗透率要大于0.1×10-3μm2,单井日产气量超过2000m3的煤层气井煤层原始渗透率要大于0.5×10-3μm2(图4-10)。

图4-10 中国煤层渗透率与单井日产气量之间的关系图

一般认为低煤阶煤要求渗透性较高煤阶煤高,国外一般低煤阶煤层渗透性达到几十至上百个毫达西,如粉河盆地一般10×10-3~20×10-3μm2,苏拉特一般2×10-3~10×10-3μm2,中国准南一般2×10-3~13×10-3μm2,阜新一般大于0.5×10-3μm2。

(七)有效地应力

有效地应力指煤层压裂最小有效闭合应力,为煤层破裂压力与其抗张强度之差。有效地应力与区域地应力场、煤层埋深有关。煤层气多富集于高地应力下的局部低地应力区。煤层有效地应力低的地区,其煤层渗透率比相同条件下的高应力区的煤层渗透率要高。煤层有效地应力愈大,其压裂难度愈大。煤层地应力超过25MPa时,一般压裂效果差。圣胡安盆地高产区域地应力为3.0~8.0MPa,沁水煤层气田为7.9~9.4MPa,均属最有利区。

通过中国主要煤层气目标区煤层渗透率与有效地应力之间的关系可以得出,煤层地应力应小于25MPa,地应力小于15MPa最为有利(图4-11)。

图4-11 中国主要煤层气目标区煤层渗透率与有效地应力之间的关系图

(八)煤层埋深

煤层埋深是影响煤层有效地应力的重要参数之一,一般随煤层埋深增加,煤层有效地应力随之增加。煤层埋深同时影响煤层渗透率,一般随埋深增大煤层渗透率减小。煤层埋深还影响煤层含气量及含气饱和度。另外,随着煤层埋深增加煤的演化程度也会随之增加(图4-12)。而且,煤层埋深越深,煤层气开采成本和开采难度越大,不利于煤层气开发。

美国圣胡安和黑勇士盆地煤层气高产井煤层埋深一般小于1200m,美国粉河、加拿大艾伯塔盆地煤层埋深300~500m,中国沁水煤层气田煤层埋深一般150~800m、大宁—吉县煤层埋深一般小于1200m。具有工业开采价值的煤层富集区煤层埋深应小于1500m,小于1000m最有利。

(九)地解比

地解比是利用吸附等温线实测含气量对应的临界解吸压力(图4-13)与原始地层压力的比值。临界解吸压力一般利用初期开采井开始出气的井底压力加以校正,此值反映了产气高峰期快慢和高产富集条件。临界解吸压力愈接近原始地层压力,高产富集条件愈优越。

高地解比区如美国圣胡安盆地高产区块为0.93,黑勇士盆地为0.72~0.99;中国大宁—吉县地区为0.60,宁武南部为0.50,昌吉地区为0.70,霍林河盆地为0.90,沁水煤层气田樊庄区块日产气大于2000m3的井临界解吸压力一般超过0.50。中地解比区如中国吴堡、大城地区为0.23~0.25,开采中产气量低(小于2000m3)、递减快。而低地解比区一般反映含气量低、含气饱和度低,不具备煤层气开发条件,如中国河北唐山地区为0.04~0.15。

图4-12 不同地应力下煤层渗透率与煤层埋深之间的关系图

图4-13 中国沁水盆地樊庄区块临界解吸压力与平均日产气量的关系图

初步将煤层气选区评价地解比界于0.20以上,大于0.50最有利。

(十)构造发育状况

构造因素直接或者间接控制着含煤地层形成至煤层气生成聚集过程中的每一个环节,是所有地质因素中最为重要而直接的控气因素。构造发育状况直接影响煤层气的保存,不同类型的地质构造,在其形成过程中构造应力场特征及其内部应力分布状况不同,均会导致煤层和封闭层的产状、结构、物性、裂隙发育状况及地下水径流条件等出现差异并进而影响到煤储层的含气特性。在中国,煤层气保存条件尤为重要,煤层气藏形成后得以保存至今,要求构造条件简单,断层稀少,煤体结构保存完整,同时简单的地质构造也有利于煤层气的开发,近期煤层气开发表明,高产井分布于构造上斜坡带。

(十一)水文地质条件

水文地质条件是影响煤层气赋存的一个重要因素。煤层气以吸附态赋存于煤孔隙中,地层压力通过煤中水分对煤层气起封堵作用。因此,水文地质条件对煤层气保存、运移影响很大,对煤层气的开采至关重要。中、高煤阶生气不成问题,关键是后期保存,因此中、高煤阶煤层气富集区要求水文地质条件简单,处于高矿化度弱径流-滞留区,煤层气井排采过程中易降压,产水量适中,有利于煤层降压解吸。低煤阶如果煤层气成因以生物成因为主,则要求弱径流区,低矿化度有利于晚期生物气生成及水动力承压封堵有利于煤层气的保存,如果以热成因为主则对水文地质条件的要求与中高煤阶相同。

根据以上研究,得出中国煤层气选区评价参数及标准见表4-4。

表4-4 中国煤层气选区评价参数标准表

二、煤层气目标区优选评价 *** 体系

(一)煤层气目标区优选思路

中国煤层气资源分布地域广,成煤期多,经历的构造运动期次变化很大,成煤环境复杂,成煤规模、构造条件、演化程度复杂,因此中国煤层气目标区具有如下特点:

(1)目标区众多,共有5大聚气区、30个聚气带及115个煤层气目标区。

(2)目标区地理位置分散,在全国范围内除了 *** 、台湾及海南等省区外均有分布。

(3)目标区在规模、地质条件及煤层气开发基础等方面存在着很大的差异。根据已有的认识,各目标区开发前景差异也很大。

(4)目标区研究程度参差不齐,有的目标区进行了大量研究,开发工作已经全面展开,有的工作极少。因此,各个目标区要讨论的因素只有部分目标区数据齐全,相当一部分目标区只有部分因素数据。

根据上述特点,煤层气目标区的优选排序应该是多层次的。即不可能按照统一标准来进行全部煤层气目标区的优选排序工作。对于全部目标区,应采用能够获得的因素来进行;对于研究程度较高的目标区,可采用更多的因素。因此,优选工作是递进的。即随着优选层次的上升,优选结果越来越接近实际情况。所以,这里采用的优选 *** 也可以称为“多层次综合递进优选法”。根据具体情况,可以采用以下4个层次的优选:

之一层次,利用含气量这一关键因素采用“一票否决”进行筛选。

第二层次,利用评价面积-资源丰度组合进行第二次筛选。主要考虑目标区规模和资源量大小对目标区进行筛选,并进一步从煤层气资源因素的角度对煤层气目标区进行优选,考虑的因素包括评价区面积、资源丰度、含气量、吸附饱和度、煤级、地解比、构造条件、水文地质条件和开发基础等。

第三层次,关键因素渗透率组合优选。在该层次中采用渗透率作为关键因素。所以,只有进行过试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、煤阶、地解比、构造条件、水文地质条件、渗透率及开发基础因素等。

第四层次,储层压力关键因素二次优选。该层次采用的关键因素为储层压力。只有经过煤储压力试井的目标区才能参加优选,考虑的其他因素包括目标区面积、资源丰度、含气量、吸附饱和度、渗透率、构造条件、水文地质条件和开发基础因素等。

综上可以看出,随着优选排序层次的提高,考虑的关键因素综合性越高、代表性越强,优选结果与实际情况越接近。

(二)煤层气目标区优选 *** 和模型

为了实现上述优选思路,必须选择恰当的计算 *** 使评价结果合理化。为此,这里引入3种评价 *** :风险系数法、综合排队系数法和区间数模糊综合评判法。

1.风险系数法

该法是国际上对常规油气圈闭进行定量排序的基本 *** 。在对地质风险因素进行正确分析的基础上,采用概率加的方式对主要控气地质因素进行计算机处理,得出反映各评价单元综合风险大小的地质风险系数,再根据风险系数的大小进行排序。若某一评价单元(i)中包括n个主要风险要素,且某一要素(j)的相对风险概率为Pi为

煤层气开发利用前景和示范工程

式中:fij为第i个评价单元中的第j个风险要素的绝对值;Qj为第j个要素的权重值;fj,max为所有评价单元中第j个风险要素的更大值。

风险概率即为风险系数,其数值分布在0~1之间。由于在算法中引入了归一化过程,因此这里的风险系数只是各评价单元之间相对概率大小的度量或排序依据,而不能将其视为绝对概率。显然,风险系数越大,评价单元的煤层气勘探开发前景就越差;反之则越好。

将所有参评单元风险系数按大小进行排序,便可得到最终的排序结果。采用更优化分割 *** 对排序结果进行处理,按风险概率的相似性分为若干风险系数组,以利于进一步的勘探风险级别评价及其与“关键因素逐级分析法”的结果进行对比。

2.综合排队系数法

该法是由中国石油资源评价专家武首诚(1994)提出的。他将由地质风险分析筛选出来的风险要素进一步综合为地质风险评价(Ri)和资源量(Qi)两大类,并赋以直角坐标系中x轴和y轴的数量化意义。Y值表示资源量,X值则为其余要素的概率平均值。

根据上述两类系数,计算综合排队系数(Ra),然后由其大小对参评单元进行综合排序。在数学意义上,Ra表示评价单元P(x,y)距具有更大理论潜势的评价单元A(1,1)之远近。因此,Ra越小,资源潜势就越大。在处理过程中将更大资源系数定义为1,因此Ra值分布在0~1之间。

根据煤层气资源及其控气因素有别于常规油气资源的特征,本书对综合优选系数法进行了修改。将x轴重新定义为资源系数,为含气量、资源量、资源丰度和理论饱和度的概率和;y轴则为保险系数Gi,其值等于1-Ri,其中Ri为其余主要风险要素的概率和。

由此得到综合优选系数Ra的表达式:

煤层气开发利用前景和示范工程

资源系数和保险系数中各包括了若干要素,求算这两个系数的原理、 *** 和上述风险概率值的计算 *** 相同。

3.区间数模糊综合评判法

模糊综合评判 *** 是应用广泛的多因素综合评价 *** 之一,它对用模糊数表示的不确定性评价因素体系,有着良好的处理能力。但是对含有区间数(即一个有界闭区间)表示的评价因素,模糊综合评判已无能为力,其中关键是区间数的排序问题难以解决。关于区间数的排序,本书借助区间数的排序 *** 构建区间数模糊综合评判的数学模型如下:

设X={x1,x2,…,xm}是因素集,其中xi是评判指标,如“埋深”、“煤厚”等,其中部分因素用区间数表示;Y={y1,y2,…,yn}是评语集,其中yi是模糊语言,如“优”、“良”等,设A是被评判的对象,如煤田的某一块段。评判步骤如下:

单因素评判:由于评判对象A自身的某些不确定性,对A的某因素xi而言,若A为一个准确值,则它属于yj的程度用一个模糊值来表示;若A不确定,则它属于yj的程度用一个区间值来表示。另外,根据普通实数是一个特殊的区间数,把用一个模糊值表示的评判指标也用区间数表示。于是对某一评判因素xi,A属于yj的程度均可表示为区间数[

][0,1],i=1,2,…,n;j=1,2,…,m。

于是得到一个区间值模糊映射 f∶x→IF(Y)

煤层气开发利用前景和示范工程

这里,IF(Y)是Y上的全体区间值模糊集。得到区间值模糊综合评判矩阵为

煤层气开发利用前景和示范工程

确定评判指标的权值:设W=(w1,w2,…,wn)ϵF(X),这里F(X)是X 上的全体模糊记。Wi是各因素的权值,本书采用灰色关联法求取各因素的权值,且满足w1+w2+…+wn=1。

煤层气开发利用前景和示范工程

这里

煤层气开发利用前景和示范工程

排序:运用区间数排序 *** 排列区间数

,(j=1,2,…,m)设

则被评判对象A最终属于评语yk。

为了实现对煤层气目标区的优选排序计算,必须获得相关的要素数值。煤层气目标区评价中使用的要素,均为具体的数据和区间数据。在进行优选排序时,因要计算其相对风险概率值、综合排队指数及区间数模糊综合评判,故要对同一因素取值相同的单位,即可实现上述赋值。而对一些不能取具体数据的要素,如区间要素,必须规定其模糊级别的分级 *** 。

为了避免人为因素的作用,这里采用层次分析 *** 来进行权重确定。利用此法确定因素权重的原理是:对于某一层次某个因素,建立下一层次元素的两两判断矩阵,一次计算该层次因素对于上一层次的相对权重。两两判断矩阵数值的含义如表4-5所示。

这样,对于上一层次的某个元素,下一层次中被支配的n个子元素或要素就构成了一个两两判断矩阵:

A=(aij)n×n

其中,aij为要素i与要素j相对于上一层次要素的比例标度。

表4-5 两两判断矩阵构建中1〜9标度的含义表

下一步,对判断矩阵进行一致性检验。判断矩阵一致性检验 *** 很多,如特征根法:

煤层气开发利用前景和示范工程

式中:w为权重向量,

;A为判断矩阵;

为A的更大特征根。

一致性指标CI和一致性比例CR的求算 *** 为

煤层气开发利用前景和示范工程

式中:RI为平均随机一致性指标,可通过查表获得。当CR0.1时,判断矩阵的一致性是可以接受的。反之,需要对判断矩阵进行适当的修正。

最后计算各层元素对目标层的合成权重:

煤层气开发利用前景和示范工程

式中:w(k)为第二层中元素对总目标的排序向量;w(k-1)为第k层中第nk个元素对第k-1层中第j个元素为准则的排序权重向量。最后需要指出,判断矩阵A需要通过专家调查来获得。

根据上述 *** ,进行权重计算得到权重系数(表4-6)。

采用风险系数法、区间数模糊综合评判法结合综合排队系数法进行排序。

表4-6 关键因素权重赋值及权系数计算结果表

请问煤层渗透率与煤层透气性系数之间的数值关系?即二者之间的换算

煤层透气性表征煤层对瓦斯流动的阻力,它反映着瓦斯沿煤层流动的难易程度,是煤层瓦斯抽采的一个重要指标。其物理意义是在1m长的煤体上,当压力平方差为1MPa2时,通过1m2煤体的断面,1D流过的瓦斯量m3。在一定压差下,岩石允许流体通过的性质称为渗透性;在一定压差下,岩石允许流体通过的能力叫渗透率。甲烷的动力黏度在0℃时为1.084×10^-8帕·秒,煤层透气性系数(λ)为平方米/(平方兆帕·日),大致相当于煤层渗透率为0.025×10^-3平方微米。故透气性系数和渗透视率的换算公式为:1m2/MPa2·d相当于0.025mD即1mD=40m2/MPa2·d。透气性系数与渗透性系数是两个不同意义的概念,前者主要是指煤体对瓦斯的流动粘滞作用,后一个指煤岩体通过不同气体的能力。

化验煤的详细流程??

煤炭化验采制化流程:

1、 采样:

在被采样四周取有代表性的八个点,共采3~5千克 .采样深度为0.4米,煤堆表面的煤不宜采取。因为堆表面的煤在空气中经受了不同程度的氧化后,性质也逐渐变化。取样铲的使用角度与煤堆表面呈垂直状,遇到矸石、大块、黄铁矿时不可以随意舍弃。

采样后如不及时化验,试样应密封。

2、破碎:

将试样粒度破碎至13mm或6mm水分小的可一次性破碎到6mm

3、缩分 :

堆锥四分法(二分器法取一边的一份,全部通过二分器,再进行缩分至需要重量) *** :将破碎过的试样摊成圆锥状,十安交叉分成四份,取对角两份,另两份舍去,然后,再混合摊成圆锥状,进行缩分,直至最后缩分至所需重量既可(约100g)

4、烘干:

将缩分过的试样平摊于不锈钢盘中,厚度不大于粒度的1.5倍,待干燥箱温度升至145度时,将试样放入,鼓风条件下(提前3分钟鼓风),干燥30~40分 注:预先鼓风是为了使温度均匀

5、全水分(外水) :

a、用预先干燥并称量过的称量瓶(75乘35),迅速称取粒度小于6mm的煤样10~12g,平摊在称量瓶中

b、打开称量瓶盖,放入预先鼓风并已加热到145度的干燥箱中,鼓风条件下,干燥30~40分(国标法:105~110度,鼓风情况下,烟煤1小时,无烟煤1.5小时)

c、从干燥箱中取出称量瓶,立既盖上盖,在空气中冷却约5分,然后放入干燥器中,冷却至室温(约20分)称量

d、进行栓查性干燥,每次30分,直到连续两次干燥煤样质量的减少不超过0.01g或质量有所增加为止。在后一种情况下,应采用质量增加前一次的质量作为计算依据。水分在2%以下时,不必进行检查性干燥。

扩展资料:

化验测量对象:

一、水分(M )

煤的水分分为两种,一是内在水分(Minh ) ,是由植物变成煤时所含的水分;二是外水(Mf ) ,是在开采、运输等过程中附在煤表面和裂隙中的水分。全水分是煤的外在水分和内在水分总和。一般来讲,煤的变质程度越大,内在水分越低。褐煤、长焰煤内在水分普通较高,贫煤、无烟煤内在水分较低  。

水分的存在对煤的利用极其不利,它不仅浪费了大量的运输资源,而且当煤作为燃料时,煤中水分会成为蒸汽,在蒸发时消耗热量;另外,精煤的水分对炼焦也产生一定的影响。一般水分每增加2 % ,发热量降低100kcal/kg(大卡/千克);冶炼精煤中水分每增加1 % ,结焦时间延长5 一10min .

二、灰分(A ):

煤在彻底燃烧后所剩下的残渣称为灰分,灰分分外在灰分和内在灰分。外在灰分是来自顶板和夹研中的岩石碎块,它与采煤 *** 的合理与否有很大关系。外在灰分通过分选大部分能去掉。内在灰分是成煤的原始植物本身所含的无机物,内在灰分越高,煤的可选性越差。

灰是有害物质。动力煤中灰分增加,发热量降低、排渣量增加,煤容易结渣;一般灰分每增加2% 发热量降低10okcal / kg 左右。冶炼精煤中灰分增加,高炉利用系数降低,焦炭强度下降,石灰石用量增加;灰分每增加1 % ,焦炭强度下降2 % ,高炉生产能力下降3 % ,石灰石用量增加4 % 。

三、挥发分(V ):

煤在高温和隔绝空气的条件下加热时,所排出的气体和液体状态的产物称为挥发分。挥发分的主要成分为甲烷、氢及其他碳氢化合物等。它是鉴别煤炭类别和质量的重要指标之一。一般来讲,随着煤炭变质程度的增加,煤炭挥发分降低。褐煤、气煤挥发分较高,瘦煤、无烟煤挥发分较低。

四、固定碳含量(FC ):

固定碳含量是指除去水分、灰分和挥发分的残留物,它是确定煤炭用途的重要指标。从100减去煤的水分、灰分和挥发分后的差值即煤的固定碳含量。根据使用的计算挥发分的基准,可以计算出干基、干燥无灰基等不同基准的固定碳含量。

五、发热量(Q ):

发热量是指单位质量的煤完全的燃烧时所产生的热量,主要分为高位发热量和低位发热量。煤的高位发热量减去水的汽化热即是低位发热量。发热量国际单位为百万焦耳/千克(MJ/kg ) 。为便于比较,我们在衡量煤炭时消耗时,要把实际使用的不同发热量的煤炭换算成标准煤。

国内贸易常用发热量标准为收到基低位发热量( Qnet,ar) ,它反映煤炭的应用效果,但外界因素影响较大,如水分等,因此Qnet,ar 不能反映煤的真实品质。国际贸易通用发热量标准为空气干燥基高位发热量( Qnet,ar) ,它能较为准确的反映煤的真实品质,不受水分等外界因素影响。

参考资料:煤炭化验_百度百科

水合物渗透率的测定

渗透率是反映多孔介质的渗流能力的参数,是影响天然气水合物分解后的产气速度的重要因素。因此,在天然气水合物的开采利用阶段,含水合物沉积层的渗透率以及初始天然气水合物饱和度、生产压力等都将对天然气水合物的开采效果产生重要影响。

实验装置

实验装置的水合物生成与驱替部分采用同一个容器,即水合物生成后可以立即进行驱替试验,测定该种状态下的渗透率。容器的温度由外部夹套中的冷却水控制,温度范围为-30℃至室温。容器的更高工作压力为30MPa,工作温度范围为-30~30℃,内径为60mm。驱替压差采用高静压差压变送器,同时采用压力传感器测量两端的压力,以便在压差超出差压传感器的测量范围时,可以直接测量两端压力以求出压差。由于压力传感器的精度等级为0.05,所以在30MPa的量程下,其最小分辨率为15kPa,差压传感器的量程应取150kPa。趋替动力采用MOSTB精密平流泵,在双机轮替的工作模式下,可以确保驱替压力波动小于0.01MPa,同时,通过计算机控制系统设定泵的控制参数及取回数据。图75.12为整个装置系统的示意图:

图75.12 水合物渗透率测定装置示意图

实验技术与 ***

在实验装置内可模拟低温高压环境下在沉积物中生成天然气水合物,实验过程中使用TDR技术测量沉积物中的含水量,以此确定沉积物中天然气水合物的饱和度,在不同天然气水合物饱和度情况下,测量水的渗透率。水合物与容器内壁间采用导热橡胶套隔开,目的是阻断水合物与容器内壁间可能的流道,以确保驱替液体确实是通过水合物的内部通道。考虑到TDR的测量精度,确定的反应区长度取为150mm,TDR探针同时作为热电阻的载体。在测定的反应区外,考虑到不能产生管道阻塞的现象,两端必须保持有不生成水合物的区域,这两个区域设定为50mm,具体试验中的长度由TDR测试结果实测计算得出。具体实验步骤如下:

1)反应容器内预先装填好沉积物并压实;系统抽真空后,在饱和水容器中,制备指定压力下的饱和水。此时的压力将在整个水合物生成过程中稳定不变。

2)背压阀全开,启动平流泵,使饱和水在系统中循环流动,以便饱和水充分浸润沉积物。

3)关闭平流泵,同时关闭反应容器两端的阀门以稳定容器内压力,启动制冷,开始水合物的生成。同时采集温度及TDR数据。

4)水合物生成结束后,可开始水渗透率的测试。设定驱替压力差,动态控制平流泵出口压力,保持压差恒定。纪录压差、流量,以及温度和TDR数据。

5)通过下列公式计算含水合物样品的水渗透率:

岩石矿物分析第四分册资源与环境调查分析技术

式中:ka为水渗透率,μm2;qw为水的流量,mL/s;μw为测定温度下水的黏度,mPa·s;L为试样的长度,cm;A为试样截面积,cm2;p1为试样进口压力,MPa;p2为试样出口压力,MPa。

6)同时,根据TDR波形,计算多孔介质中水合物的饱和度,由此得出不同水合物饱和度情况下试样的水渗透率,了解水渗透率随水合物饱和度的变化趋势。

煤层气地层评价的测井资料

测井是指井中的一种特殊测量,这种测量作为井深的函数被记录下来。它常常指作为井深函数的一种或多种物理特性的测量,然后从这些物理特性中推断出岩石特性,从而获得井下地质信息。但是,测井结果也并非仅限于岩石特性的测量,其他类型的测井实例尚有泥浆、水泥固结质量、套管侵蚀等等。

测井一般可分为借助电缆传输进入井内仪器获得信息的电缆测井和无电缆的测井,如泥浆测井(钻井泥浆特性)、钻井时间测井(钻头钻进速率)等等,本节重点介绍电缆测井。在煤层气工业中,要评价煤层的产气潜力,首先应了解煤的储层特性和力学特性,这些特性的获得主要有3种途径:钻取煤心作室内测试、利用测井进行数据分析、进行试井等。评价煤层特性的资料来源见表8-1和表8-2。

表8-1 评价储层特性的主要非测井资料来源

煤心、测井和试井数据的综合运用,可以增加数据可靠性,提高资源评价精度。煤层厚度、煤质(工业分析)、吸附等温线、含气量和渗透率,对以储层模拟为基础的产量预测有重大影响。取自煤心的分析通常用来确定吸附等温线、含气量和煤质,测井数据用来确定煤层厚度,确定煤层渗透率的最可靠的 *** 则是通过试井作业的试验数据分析。这些 *** 通常被看作是确定储层特性的基础或依据准则。但是,由于某些煤心和试井带来的误差,煤心测试程序缺乏标准化,特别是取心和试井费用昂贵,人们希望能有一种确定每个储层特性的替代 *** 。通过这种替代 *** 获得测定关键储层的特性,并校正那些不一致的或错误的试验数据。目前,测井作业被认为是更具前途的一种手段。一旦用煤心数据标定了测井记录数据,技术人员就可以单独利用测井记录数据精确估计补充井的储层特性(表8-3)。据Olszewski等人对40口井开发项目地层评价费用的估算,使用标定的测井 *** 可以比现行的地层评价 *** 降低约16%的费用。因此,测井在煤层气工业中正发挥着愈来愈重要的作用。

表8-2 评价储层特性的测井资料来源

表8-3 用于煤层气地层评价的测井资料

注:(1)建议只用于煤评价;(2)用于煤和砂层评价;(3)用于取心时;(4)用于进行原地应力评价。

0条大神的评论

发表评论